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Abstract: Koenig has developed a mathematically simple model of diffusion controlled geminate combinations which ignored 
direct intermolecular force effects on the diffusing fragments. We have extended this theory to provide approximately for such 
effects, particularly in the two limiting cases when the intermolecular forces are either very weak or very strong in comparison 
with the thermal fluctuation force responsible for the diffusion. In the former limit one finds only small perturbations from the 
Koenig yield function which is proportional to the reciprocal square root of viscosity. In the large force limit substantial devia­
tions from this proportionality could obtain. Experimental implications of our calculations are considered. 

Many models1-5 have been proposed for the efficiency of 
geminate combination reactions, which have been recently 
reviewed by Koenig and Fischer.6 Previous treatments have 
ignored the effects of intermolecular forces between the 
combining (or diffusing) fragments. We examine these effects 
in this paper using the simplest version of the theory. In view 
of the many approximations which we will be forced to make, 
and which will be more fully discussed below, we will be able 
to obtain only semiquantitative results. Anticipating this we 
will replace the mathematically complex, real forces between 
the fragments by simplified, radial forces acting on the centers 
of mass of the fragments. Our starting point will be the sim­
plified theory of Koenig and Deinzer7 (KD) whose justification 
has been provided by the more accurate treatment of Koenig.2 

We will adopt both the terminology and notation of the KD 
article. 

Specifically, we will treat two cases of diffusion controlled 
dissociation subject to forces between the diffusing fragments 
which will be generally electrostatic in origin: 

Case I 

A-X-B-^Al (B 

(with the motion of X immaterial and forces 
considered only between A and B) 

or 

Case II 

A-X-B - ^ - A [I X Il B 

(with forces between A and B, A and X, and B and X) 

Following KD,7 the rate constant k^ is given by 

where r is the effective reduced lifetime of the pair defined by 
eq 6 of KD, r(r) is the root mean square displacement distance 
of the fragments, p - RQ is the distance they must travel to 
effectively escape one another with p the effective (cage) col­
lision diameter and Ro the initial distance of separation. As 
shown in ref 7 for diffusion not restricted by any interfragment 
forces r(r) = (2£>T)'/2 . In the next section we will present a 
classical phenomenological theory of r(r) in the presence of 
such forces. We make the following assumptions which also 
underlie the KD theory: (1) All effective molecular parameters 
such as local, effective diffusion coefficients D, viscosities TJ, 
and dielectric constants e can be approximated by their mac­
roscopic bulk values. Clearly the actual molecular environment 
of the reaction site is "grainy" on a molecular scale; thus our 
theory can be used at best as a data-correlation scheme with 

the bulk properties of the medium. (2) All other complications 
such as, e.g., discussed by Carapellucci8 are ignorable for the 
systems to which we restrict our considerations. (3) All sepa­
rations between the fragments can be treated as if they oc­
curred along a straight line connecting the center of mass of 
A and B in case I and an effective straight line connecting the 
centers of mass of A, X, and B in case II. Clearly the latter 
assumption is a drastic approximation to simplify the mathe­
matics. 

In Appendix A we will test this approximation for an exactly 
soluble instance of case I. Subject to these assumptions the 
calculation of k& given by eq 1 reduces to a calculation of r(r) 
using Smoluchowski's equation rather than Fick's second law 
equation for pure diffusion in the absence of forces. In the final 
section of this paper we will very briefly relate the theory to 
some of the available experimental data. 

Theory of the Root Mean Square Displacement Distance in 
the Presence of Forces. In case I let us fix the coordinate system 
on the center of mass (CM) fragment B and let x be the dis­
tance from the CM of the fragment A. The probability of 
finding the CM of A at a distance lying between x and x + dx 
at time t is p(x,t)dx, which satisfies the Smoluchowski equa­
tion 

dp ^d /dp F(x) \ ^ ^ 

subject to the initial condition 

p(x,0) = S(x - R0) 

where D = Z) A + D% (Z)A, ZJB being the binary diffusion 
coefficients of the A and B fragment, respectively, which are 
presumably inversely proportional to the medium viscosity) 
and F{x) is the force between fragments A and B (e.g., a 
Coulomb force if A and B are charged, dipole-dipole force, 
etc.). Denote by 

(fix))= C"f(x)p{x,t)dx 

then multiplying eq 2 by x, x2 and xF(x), respectively, and 
integrating by parts one finds (r2 = (x2)) 

^-Tr ^ 
^l.Ml)m.2D[l + <^fl] (4) 

+jf(FM&'™)} (5) 
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respectively, using the facts that p and its derivatives vanish 
as \x\ -» °°. 

Equation 5 shows that in general an exact closure relation 
for eq 4 is not possible except for some special cases. We deal 
with these first: (a) For very small displacements all analytic 
potentials with a single minimum lead to a harmonic oscillator 
force F(x) = -y(x - X0) where the equilibrium distance X0 
need not equal R0 and y is the effective spring constant. In this 
case eq 3 and 4 become 

d/ kTW kT 
d< f-4-^^wl 

which can be successively integrated (subject to (x) = V{x2) 
= Ro as t -*• O) to give 

(x) =R0e-Dy</kT + xo[l -e-
Dv/kT] 

(x2) = (RO2 + Ix0Ro ~ 3x0
2 - ^ ) e~2Dy>/kT 

-2X0(R0 ~ xo)e~Dy'/^ + ( * I + XQI\ ( 6 ) 

Finally 

KT) = \{RO2 + 2x0Ro ~ 3x0
2 - ^I)c-2fl7r/*7-

^j - 2 X0(R0 ~ x0)e-D^kT + (— + x0
2) (7) 

Equation 7 simplifies for X0 ~ R0 ~ 0 to 

/-(T) = V - ( I - c-2^V*T) 
T 

(8) 

Thus r(r) is independent of D if T » kT/2Dy and behaves 
as 

K W 2D 
AD2T2 

•y 

kT 
for T « kT/2Dy (the more likely possibility if the process is 
diffusion controlled). 

(b) The second exactly soluble case can be encountered when 
the B fragment is a long cylindrical polyelectrolyte and the A 
fragment a point charge q, where 

F(x) = 
dx [3^In (*/«)] 

with y the change per unit length of the polyelectrolyte, e the 
dielectric constant, and a the radius of the cylinder. Using eq 
4 one finds 

and thus 

x2) =R0
2+ 2Dt{I -2Xqa/e) 

T(T)-yjRf + 2 Z ) ( I - ^ f ) 

(9) 

(10) 

Equation 10 is of the same form as the free diffusion result 
except that the diffusion coefficient is replaced by an effective 
constant 

2\qa\ ^ . / , ( ! - 2 * 2 2 ) 

In other cases we must resort to further approximations. 
Clearly two limiting cases can exist for eq 4: either (xF) < kT 
(weak field limit) or) » kT (strong field limit). In the weak 

field limit we can replace eq 4 by the perturbation approxi 
mation (V(x2) = r(t)) 

df (H) 

where r0(t) = Vi?0
2 + 2Dt is the free diffusion separation of 

the fragments. Integration of eq 11 yields explicitly 

r(r) « V Ro2 + 2Z)r + H §\0(t)F(r0(t))At (12) 

In the strong field limit r(t) =* (x) and (F) =* F(r) as de­
termined by setting 

We note that eq 13 is indeed consistent with the physically 
intuitive requirement that now (x) ^ r(t) since neglecting 1 
in comparison to rF/kT we have 

dr D 
F(r) (14) 

df A:T 
which is eq 3 with (F) = F(r), a further approximation. From 
eq 13 one obtains r(r) implicitly from the quadrature 

JM T ) rdr 

, „ * — ' " ' < 1 5 > ['̂ ] 
In the case of a Coulomb force between the fragment charges 
9A. <7B 

^ (x) = ? A ?B/«X 2 , a = qAqB/ekT 

one finds from eq 15 

rr(r) r2<±r 
DT = I = 

J«o r + a 

+ aR0 + a2 In 

f'JW-ar(T)_*>? 
2 w 2 

[ " + KT) ] I 
L a + J?0 Jj 

. ^ . S d + 0 ( I ) „6, 
3a 3a \al/ 

The last expression in eq 16 is the same result as is obtained by 
integrating eq 14 directly to obtain 

K T ) = ^ A 3<?A<?B£> 

ekT 
(17) 

The viscosity and dielectric constant variation with changing 
solvent of the effective yield y satisfies now (see eq 1 in KD) 

I - i =hA + h 

,</ 
Vconstant 

+ constant' 
(V 

(18) 

instead of a linear relation in r/-1/2 as for free diffusion. In the 
weak field limit one has from eq 12 

r2(T) = R0
2 + 2DT + 2a[VR0

2 + 2DT - R0] 

which reduces for small a and 2DT » R0 to 

r(r) = VWr'+ a 

Thus the weak field limit, via eq 12, predicts that 

1 , ,. /constant , constant' , „ , ,„ , 
- - I = V + + constant" (19) 
y v « 

Unfortunately a Coulomb field cannot really be weak for any 
realistic physical situation. 
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The dependence on 77 of the yield is even weaker for dipole-
dipole forces F(x) = CMAMB/*4 with MA the dipole moment 
of A and C containing the orientation averaged angular factors. 
The strong field limit gives 

r( T) at V *O5 

kT 

or - - 1 = constant / ^ M 1 / 5 + constant' (20) 

The weak field limit, via eq 12, yields 

ttAMB f 1 1_1 
o2 + 2DT IVR0

2 + 2DT R0] 

r{T) =* VR0
2 + 2DT 

OtAMB_ 

kTV~R 

— 1 = constant ? j - 1 / 2 + constant CMAMB'?1''2 

y 
X [ I - constant" 7;1/2] + constant'" (21) 

We now turn to case II. Professor M. Szwarc9 thought that this 
would be an important case for charge transfer in an organic 
medium with induced dipole forces between the fragments A, 
X, B. We fix our coordinate system on the fragment X on a line 
through the CM of A and B, viz. 

B X A 
• » » — 

XB 0 XA 

The arrows indicate the positive direction of the distance x A , 
Xs- We need r(t) where 

r2(t) = ( ( x A + xB)2) 

= J 0 0 J ( * A + XB)2P(X A,xB,t)dxAdxB 

with/?(xA,XB,OdxAdxB the joint probability of finding frag­
ment A between x\ and XA + dxA and fragment B between 
XB and XB + dxs at time ;. This joint probability satisfies a 
Smoluchowski equation involving two diffusion coefficients 

Dk = DA + Dx 

DB = DB + DX 

(D = DA + DB) 

and the forces F A ( x A ) between A and X, F B ( * B ) between B 
and X, and FAB(XA + XB) between A and B. We will not 
supply here computational details (interested readers can apply 
to us to supply this to them); instead we merely quote the re­
sults for the strong and weak field limit for induced dipole 
forces, where F(x) = A x - 7 , K being the appropriate force 
parameter KA, K B , or A-AB-

In the strong force limit one has 

r ( r ) cs [R0* + 8iA"A<T7 + K3(I - * ) ~ 7 + A -ABZ)TJ]1 /8 

(22) 

with <f> obtained from the numerical solution of 

_ ^ = /DA\ KA<fi~6 + <t>K AB 
(\-<t>)2 \ D B / KB(I-4>)-6 + (\-<t>)KAB 

(23) 

If the second term in the eighth root in eq 22 is dominant 
then 

1 , 
— 1 = constant 
y 

X [[KA(J)-1 + KB(\ - (f)'1 + A -ABh - ' ] 1 / 8 + constant' 
Unless exceptionally large differences arise in the viscosities 
or AT's with changing solvent one would essentially observe eq 
23 as x jy — 1 being roughly constant. 

In the weak field limit one finds, with </>0 = V D A / ^ B / O + 
^DAIDB), 

r(T = VR0
2 + 2DT 

X l + 
(A-A^0-7 + K B O ~ 4>o)-7 + * A B ) 

or if R0
2 « 2DT 

4(R0
2 + 2DT) 

X UV -CRo2 + 2DT)2W
 (24) 

- - 1 = constant ? r 1 / 2 11 + V(KA^O-1 + A - B ( I - 0 O - 7 ) 
y 

+ A-AB) [ 1 - constant" r;2]) + constant'" (25) 

Equation 25 exhibits explicitly the small, solvent-dependent 
correction terms to the Koenig-Deinzer result. 

Discussion 

The experimental data currently available indicate that 
several decompositon reactions obey the reciprocal square root 
dependence on viscosity as originally derived by Koenig and 
Deinzer,7 and that the additional terms in Koenig's later ap­
proximation2 or in the weak field limit represented in eq 19 
above are not important.10 

Among the types of compounds whose decompositions obey 
this relationship are peresters,2'7 iV-nitrosohydroxylamines,7 

and azo compounds.10 When deviations from linearity occur 
they appear as upward curvatures at lower viscosities. Thus, 
with the data presently available it is reasonable to expect that 
the weak field approximation will usually hold for systems 
involving decompositions of neutral molecules. 

Recently it has been reported that the second-order reaction 
between trimethylstannylsodium and aryl bromides displays 
the characteristics of a cage effect, the caged species being 
shown as the products of the following equation:1 ' 

ArBr + Me3SnNa — {ArNa, Me3SnBrJ 

Because of the highly polar nature of ArNa one might an­
ticipate behavior approximating the strong field case repre­
sented by eq 18. However, in mixtures of tetraglyme and 
1,2-dimethoxyethane the viscosity behavior obeys the recip­
rocal square root behavior very nicely, and the linear plot re­
quired by eq 18 is strongly curved.12 This observation suggests 
that either the species in the cage are not those proposed13 or 
that ArNa and Me2SnBr behave like the dipolar free radicals 
of the more familiar examples of the cage effect. 

Perhaps a suitable system for testing the effect of inter-
molceular forces on cage behavior could be obtained with a 
system such as that represented in case I in which A and B are 
ions and X is sufficiently large that they are well separated in 
the cage at the moment of formation. 

Acknowledgments. We are indebted to Drs. T. Koenig, R. 
A. Noyes, Jr., R. Mazo, and M. Szwarc for clarifying discus­
sions. Both authors wish to acknowledge support by the Na­
tional Science foundation and the donors of the Petroleum 
Research Fund, administered by the American Chemical 
Society. 

Appendix A 
If the fragments A and B of case I are treated as points 

diffusing in three dimensions, with the coordinate system again 
fixed on fragment B, and r the radial distance to fragment A, 
one can replace eq 2 by 

*P = Z*l,2 
dt r2 

p(r,0) = Hr ~ Ro) 
4irr2 

(Al) 
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Denoting by 

(/(/•)) = 4 x £°° f(r)p(r,t)rMr 

one finds now by multiplying eq Al by r and r2 and integrating 
by parts that 

^=>'» + <> (A2) 

essentially similar relations to our previous linear (one-di­
mensional) Smoluchowski equation results (3 and 4). The term 
2D(\/r) prevents loss of particles to a necessary singularity 
at the origin. To see the similarity of the predictions of these 
equations to those of eq 3 and 4 consider the special case when 
eq A2 can be exactly integrated, say when F(r) = -yr. For 
mathematical simplicity we set Ro ~ ô ~ 0 and compare with 
eq 8. From eq A2 we have 

The reactions of enolate anions are of major importance 
in synthetic organic chemistry as well as in the study of organic 
reaction mechanisms. An understanding of their thermo-
chemical and spectroscopic properties is useful both in devising 
synthetic schemes employing enolate anions and in mechanistic 
studies of reactions involving enolate anions. The thermody­
namic stability of an enolate anion is reflected in the acidity 
of its parent carbonyl compound. Since the acidity is strongly 
dependent on the relative solvation of the anion and the neutral 
compound, it is often difficult to evaluate the intrinsic effects 
of small changes in molecular structure on the stabilities of 
anions in solution. It is not unusual that small changes in the 
stabilities of anions in solution may be completely dominated 
by large variations in the degree of their solvation. For exam­
ple, the acidity order observed in solution is reversed from that 
observed in the gas phase for aliphatic alcohols.2 Although the 
acidities of some simple carbonyl compounds have been mea­
sured in solution,3'4 in most cases it is difficult to determine to 

Thus 

V(T5T = KO = V — [ l - e-™y*ikT] (A3) 
y 

which differs only by the factor Vl from eq 8. In view of the 
many approximations inherent in our starting formula such 
a numerical factor is negligible. 
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what extent acidity changes are the result of solvation ef­
fects. 

Recent measurements by Kebarle and co-workers5 of the 
acidities of some carbonyl compounds in the gas phase have 
been used to note substituent effects on the stabilities of enolate 
anions. While the application of these acidity measurements 
to simple carbonyl compounds was limited to acetone, aceto-
phenone, and trifluoroacetone, they clearly showed the po­
tential of the technique for investigating the intrinsic ther­
modynamic stabilities of these compounds. Grunwell and 
Sebastian6 have made a CNDO/2 study of the relative sta­
bilities of the two possible enolate anions derived from 2-bu-
tanone, finding the most highly substituted anion to be ener­
getically more stable by 11.0 kcal/mol. However, it is not clear 
that CNDO is capable of accurately predicting small changes 
in stability, especially when variations from "standard" 
geometries are not considered. 

The object of this work was to investigate the stabilities of 

Photodetachment of Electrons from Enolate Anions. 
Gas Phase Electron Affinities of Enolate Radicals 
Albert H. Zimmerman,13 Kenneth J. Reed,lb and John I. Brauman* 
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Abstract: Photodetachment cross sections are measured as a function of photon energy for enolate anions formed by proton ab­
straction in the gas phase, using an ion cyclotron resonance spectrometer to trap and detect the ions. Electron affinities are de­
termined from the photodetachment thresholds for the enolate anions from acetaldehyde, propionaldehyde, butyraldehyde, 
3-pentanone, pinacolone, methyl acetate, acetophenone, 4-heptanone, 1,1,1-trifluoroacetone, diisopropyl ketone, phenylacetal-
dehyde, acetyl fluoride, acetone, 3,3-dimethylbutanal, and 2-butanone. The cross section shapes are analyzed in terms of a the­
oretical model for photodetachment, and we conclude that each cross section is composed of many vibronic transitions. We find 
evidence for electronic transitions in some of these anions in the blue and UV regions of the spectrum. Finally, substituent ef­
fects on anion stabilities are discussed and compared with the corresponding effects in solution. 
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